Synthesis of a Novel Hybrid Liquid-Crystalline Rod–Coil Diblock Copolymer

نویسندگان

  • YI YI
  • XINHUA WAN
  • XINGHE FAN
  • RONG DONG
  • QIFENG ZHOU
چکیده

A series of novel rod–coil diblock copolymers on the basis of mesogenjacketed liquid-crystalline polymer were successfully prepared by atom transfer radical polymerization from the flexible polydimethylsiloxane (PDMS) macroinitiator. The hybrid diblock copolymers, poly{2,5-bis[(4-methoxyphenyl)oxycarbonyl]styrene}-blockpolydimethylsiloxane, had number-average molecular weights (Mn’s) ranging from 9500 to 30,900 and relatively narrow polydispersities ( 1.34). The polymerization proceeded with first-order kinetics. Data from differential scanning calorimetry validated the microphase separation of the diblock copolymers. All block copolymers exhibited thermotropic liquid-crystalline behavior except for the one with Mn being 9500. Four liquid-crystalline diblock copolymers with PDMS weight fractions of more than 18% had two distinctive glass-transition temperatures. © 2003 Wiley Periodicals, Inc. J Polym Sci Part A: Polym Chem 41: 1799–1806, 2003

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Synthesis and characterization of novel rod–coil diblock copolymers of poly(methyl methacrylate) and liquid crystalline segments of poly(2,5-bis[(4-methoxyphenyl)oxycarbonyl] styrene)

Liquid crystalline diblock copolymers with different molecular weights and low polydispersities were synthesized by atom transfer radical polymerization of methyl methacrylate (MMA) and 2,5-bis[(4-methoxyphenyl)oxycarbonyl]styrene (MPCS) monomers. The block architecture (coilconformation of MMA segment and rigid-rod of MPCS segment) of the copolymer was experimentally confirmed by a combination...

متن کامل

Order-order transition induced by mesophase formation in a novel type of diblock copolymers based on poly(isobutyl methacrylate) and poly[2,5- di(isopropyloxycarbonyl)styrene]†

Novel diblock copolymers based on poly(isobutyl methacrylate) (PiBMA) and poly[2,5di(isopropyloxycarbonyl)styrene] (PiPCS) were designed and prepared via consecutive atom transfer radical polymerization. They had relatively low molecular weight distributions and tunable molecular weights. The molecular characterization of the copolymers was performed with proton nuclear magnetic resonance spect...

متن کامل

Atom-Transfer Radical Polymerization to Synthesize Novel Liquid Crystalline Diblock Copolymers with Polystyrene and Mesogen-jacketed Liquid Crystal Polymer Segments

The synthesis of a series of new rod-coil diblock copolymers with different molecular weights and low polydispersity was achieved by atom transfer radical polymerization. The block architecture (coil-conformation of styrene segment and rigid-rod conformation of 2,5-bis[(4-methoxyphenyl)-oxycarbonyl]styrene segment) of the diblock copolymers was experimentally confirmed by proton nuclear magneti...

متن کامل

Supramolecular structures from rod-coil block copolymers.

One of the fascinating subjects in areas such as materials science, nanochemistry, and biomimetic chemistry is concerned with the creation of supramolecular architectures with well-defined shapes and functions. Self-assembly of molecules through noncovalent forces including hydrophobic and hydrophilic effects, electrostatic interactions, hydrogen bonding, microphase segregation, and shape effec...

متن کامل

Self-Organization on Multiple Length Scales in "Hairy Rod"-Coil Block Copolymer Supramolecular Complexes

The last two decades have seen an explosion of research activity in the area of self-assembled polymeric and supramolecular materials. Self-assembly schemes rely on an often delicate balance between competing repulsive and attractive forces between structural elements. In traditional coil-coil block copolymers, microphase separated structures are dictated by the balance of immiscibility between...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003